Home
Class 12
MATHS
Prove that the area of the triangle, who...

Prove that the area of the triangle, whose positionvectors of vertices are `bara, barb, barc`, will be `1/2|barbxxbarc+barcxxbara+baraxxbarb|`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (barbxxbarc)xx(barcxxbara)=3barc , then find [barbxxbarc barcxxbara baraxxbarb]

Prove that for any vector bar a,barb,barc[bara+barb, barb+barc, barc+bara]=2[bara barb barc]

Prove that [barbxxbarc barcxxbara baraxxbarb]=[bara barb barc]^(2)

If bara+barb+barc=bar0 then bara.(barbxxbarc)+barb.(barcxxbara)+barc.(baraxxbarb) is

[barb barc barbxxbarc]+{barb.barc}^(2) =

Let barr be a vector perpendicular to bara + barb + barc . If barr=l(barbxxbarc)+m(barcxxbara)+n(baraxxbarb) then l+m+n is

For any three vectors bara, barb, barc prove : [bara-barb, barb-barc, barc-bara]=0

Show that [2bara +barb +barc bara +2barb +barc bara +barb +2barc] = 4[bara barb barc]

bara , barb, barc are coplanar vectors . Prove that of the following four points are coplanar. 6bara + 2barb - barc , 2bara - barb +3barc , - bara + 2barb - 4barc , - 12bara - barb - 3barc .

Prove that [bara times barb bara times barc bard]=(bara.bar d)[bara barb barc]