Home
Class 12
MATHS
If sum(i=1)^n (xi -a) =n and sum(i=1)^n ...

If `sum_(i=1)^n (x_i -a) =n` and `sum_(i=1)^n (x_i - a)^2 =na` then the standard deviation of variate `x_i`

A

`sqrt(a^2-1)`

B

`sqrt(a-1)`

C

`sqrt(n^2a-1)`

D

`sqrt(n^2a^2-n)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the standard deviation of the variate \( x_i \) given the conditions: 1. \( \sum_{i=1}^n (x_i - a) = n \) 2. \( \sum_{i=1}^n (x_i - a)^2 = na \) We can follow these steps: ### Step 1: Understand the Standard Deviation Formula The standard deviation (SD) is given by the formula: \[ SD = \sqrt{\frac{\sum_{i=1}^n x_i^2}{n} - \left(\frac{\sum_{i=1}^n x_i}{n}\right)^2} \] ### Step 2: Rewrite the Given Sums From the first condition, we can express the sum of \( x_i \): \[ \sum_{i=1}^n (x_i - a) = n \implies \sum_{i=1}^n x_i - na = n \implies \sum_{i=1}^n x_i = n + na = n(1 + a) \] ### Step 3: Calculate the Mean Now, we can find the mean \( \bar{x} \): \[ \bar{x} = \frac{\sum_{i=1}^n x_i}{n} = \frac{n(1 + a)}{n} = 1 + a \] ### Step 4: Substitute into the Standard Deviation Formula Now, we need to find \( \sum_{i=1}^n x_i^2 \). We know: \[ \sum_{i=1}^n (x_i - a)^2 = na \] Expanding this gives: \[ \sum_{i=1}^n (x_i^2 - 2ax_i + a^2) = na \] This can be rearranged to: \[ \sum_{i=1}^n x_i^2 - 2a\sum_{i=1}^n x_i + na^2 = na \] Substituting \( \sum_{i=1}^n x_i = n(1 + a) \): \[ \sum_{i=1}^n x_i^2 - 2a(n(1 + a)) + na^2 = na \] This simplifies to: \[ \sum_{i=1}^n x_i^2 - 2an - 2a^2 + na^2 = na \] Rearranging gives: \[ \sum_{i=1}^n x_i^2 = na + 2an + 2a^2 = na + 2a(n + a) \] ### Step 5: Substitute into the Standard Deviation Formula Now we can substitute \( \sum_{i=1}^n x_i^2 \) and \( \bar{x} \) into the SD formula: \[ SD = \sqrt{\frac{\sum_{i=1}^n x_i^2}{n} - \left(\frac{\sum_{i=1}^n x_i}{n}\right)^2} \] Substituting the values: \[ SD = \sqrt{\frac{na + 2a(n + a)}{n} - (1 + a)^2} \] This simplifies to: \[ SD = \sqrt{a + 2a + \frac{2a^2}{n} - (1 + 2a + a^2)} \] \[ SD = \sqrt{a - 1 + \frac{2a^2}{n}} \] ### Step 6: Final Expression Thus, we can conclude that the standard deviation is: \[ SD = \sqrt{a - 1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(9)(x_(i)-5)=9 and sum_(i=1)^(9)(x_(i)-5)^(2)=45 then the standard deviation of the 9 items x_(1),x_(2),......,x_(9) is

If sum_(i=1)^(5) (x_(i) - 6) = 5 and sum_(i=1)^(5)(x_(i)-6)^(2) = 25 , then the standard deviation of observations

In a group of data, there are n observations, x,x_(2), ..., x_(n)." If "sum_(i=1)^(n)(x_(i)+1)^(2)=9n and sum_(i=1)^(n)(x_(i)-1)^(2)=5n , the standard deviation of the data is

If sum_(i=1)^(18)(x_(i)-8)=9 and sum_(i=1)^(18)(x_(i)-8)^(2)=45 then the standard deviation of x_(1),x_(2),...,x_(18) is

If sum_(i=1)^(n)(x_(i)+1)^(2)=9n and sum_(i=1)^(n)(x_(i)-1)^(2)=5n, then standard deviation of these backslash 'n' observations (x_(1)) is: (1)2sqrt(3)(2)sqrt(3)(3)sqrt(5)(4)3sqrt(2)

If sum_(i=1)^(n)sin x_(i)=n then sum_(i=1)^(n)cot x_(i)=

If sum_(i=1)^(n)sin x_(i)=n then sum_(i=1)^(n)cot x_(i)=

The mean and standard deviation of some data for the time taken to complete a test are calculated with the Number of observations = 25, mean=18.2s, standard deviation = 3.25s. Further, another set of 15 observations x_1, x_2, ...x_15, also in seconds, is now available and we have sum_(i=1)^15 x_i = 279 and sum_(i=1)^15 (x_i)^2 = 5524, then the standard deviation based on all 40 observations is