Home
Class 12
MATHS
Negation of pvv(q^^~p) is...

Negation of `pvv(q^^~p)` is

A

`p^^q`

B

`~pvv~q`

C

`~p vvq`

D

`~p ^^ ~q`

Text Solution

AI Generated Solution

The correct Answer is:
To find the negation of the statement \( p \lor (q \land \neg p) \), we will follow these steps: ### Step 1: Write down the original statement The original statement is: \[ p \lor (q \land \neg p) \] ### Step 2: Apply the negation We need to find the negation of the entire statement: \[ \neg (p \lor (q \land \neg p)) \] ### Step 3: Use De Morgan's Law According to De Morgan's Law, the negation of a disjunction is the conjunction of the negations: \[ \neg (p \lor (q \land \neg p)) = \neg p \land \neg (q \land \neg p) \] ### Step 4: Apply De Morgan's Law again Now, we need to negate the second part \( \neg (q \land \neg p) \): \[ \neg (q \land \neg p) = \neg q \lor p \] Thus, we can rewrite our expression: \[ \neg p \land (\neg q \lor p) \] ### Step 5: Final expression Putting it all together, we have: \[ \neg p \land (\neg q \lor p) \] This is the negation of the original statement \( p \lor (q \land \neg p) \). ### Final Answer The negation of \( p \lor (q \land \neg p) \) is: \[ \neg p \land (\neg q \lor p) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The negation of qvv(p^^r) is

The negation of p vv ~ q is

Negation of (~ p vv q) is

The negation of (p vv ~q) ^^ q is

Match the following column s: Column-I|Column-II Negation of (~ pvecq) is|p. [~(p v q)]^^[p v(~ p)] Negation of (pharrq) |q.(p^^~ q)vv(~ p^^q) Negation of (pvvq)i s |r.~ p^^~ q pharrq is equivalent to|s.~ p^^~ q

The negation of ~p^^(qtor) is