Home
Class 12
MATHS
If roots of quadrratic equation x^2-64x+...

If roots of quadrratic equation `x^2-64x+256=0` are `alpha` & `beta` then `(alpha^3/beta^5)^(1/8)+(beta^3/alpha^5)^(1/8)` =

A

`2`

B

`6`

C

`-2`

D

`5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the quadratic equation given: \[ x^2 - 64x + 256 = 0 \] ### Step 1: Find the roots \( \alpha \) and \( \beta \) Using Vieta's formulas, we know: - The sum of the roots \( \alpha + \beta = -\frac{b}{a} = 64 \) - The product of the roots \( \alpha \beta = \frac{c}{a} = 256 \) ### Step 2: Calculate \( \frac{\alpha^3}{\beta^5} \) and \( \frac{\beta^3}{\alpha^5} \) We need to evaluate: \[ \left( \frac{\alpha^3}{\beta^5} \right)^{\frac{1}{8}} + \left( \frac{\beta^3}{\alpha^5} \right)^{\frac{1}{8}} \] ### Step 3: Combine the terms under a common base We can rewrite the expression as: \[ \left( \frac{\alpha^3}{\beta^5} \right)^{\frac{1}{8}} + \left( \frac{\beta^3}{\alpha^5} \right)^{\frac{1}{8}} = \frac{\alpha^{\frac{3}{8}}}{\beta^{\frac{5}{8}}} + \frac{\beta^{\frac{3}{8}}}{\alpha^{\frac{5}{8}}} \] ### Step 4: Find a common denominator The common denominator for the two fractions is \( \beta^{\frac{5}{8}} \alpha^{\frac{5}{8}} \): \[ = \frac{\alpha^{\frac{3}{8}} \alpha^{\frac{5}{8}} + \beta^{\frac{3}{8}} \beta^{\frac{5}{8}}}{\beta^{\frac{5}{8}} \alpha^{\frac{5}{8}}} \] This simplifies to: \[ = \frac{\alpha^{\frac{8}{8}} + \beta^{\frac{8}{8}}}{\beta^{\frac{5}{8}} \alpha^{\frac{5}{8}}} = \frac{\alpha + \beta}{\beta^{\frac{5}{8}} \alpha^{\frac{5}{8}}} \] ### Step 5: Substitute known values We know from Step 1 that \( \alpha + \beta = 64 \) and \( \alpha \beta = 256 \). Therefore, we can express \( \beta^{\frac{5}{8}} \alpha^{\frac{5}{8}} \) as: \[ (\alpha \beta)^{\frac{5}{8}} = 256^{\frac{5}{8}} = (2^8)^{\frac{5}{8}} = 2^{5} = 32 \] ### Step 6: Final calculation Now substituting back into our expression: \[ = \frac{64}{32} = 2 \] Thus, the final answer is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta be two roots of the equation x^(2) -64x+ 256=0 . Then the value of ((alpha^(3))/(beta^(5)))^(1/8) + ((beta^(3))/(alpha^(5)))^(1/8) is :

If roots of the equation x^(2)-2x+5=0 are alpha and beta, then (a^(12)+beta^(12)+25(a^(8)+beta^(8)))/(a^(10)+beta^(10)) is

If alpha,beta are the roots of the quadratic equation 4x^(2)-4x+1=0 then alpha^(3)+beta^(3)=

If alpha,beta are the roots of the equation 8x^(2)-3x+27=0, then the value of ((alpha^(2))/(beta))^((1)/(3))+((beta^(2))/(alpha))^((1)/(3)) is

If alpha " and " beta are the roots of the quadratic equation x^2 -5x +6 =0 then find alpha/beta + beta/alpha

If alpha and beta are the roots of the quadratic equation x^(2)-3x-2=0, then (alpha)/(beta)+(beta)/(alpha)=