Home
Class 12
MATHS
lim(x rarr 1) (int0^((x-1)^2) tcos tdt)/...

`lim_(x rarr 1) (int_0^((x-1)^2) tcos tdt)/ ((x-1) sin (x-1))` is equal to

A

`2`

B

`0`

C

`1`

D

Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 1} \frac{\int_0^{(x-1)^2} t \cos t \, dt}{(x-1) \sin (x-1)}, \] we will follow these steps: ### Step 1: Check the form of the limit Substituting \(x = 1\) into the limit gives: - The numerator becomes \(\int_0^{(1-1)^2} t \cos t \, dt = \int_0^0 t \cos t \, dt = 0\). - The denominator becomes \((1-1) \sin(1-1) = 0 \cdot \sin(0) = 0\). Thus, we have the indeterminate form \(\frac{0}{0}\). **Hint:** Always check the form of the limit before proceeding with L'Hôpital's rule. ### Step 2: Apply L'Hôpital's Rule Since we have the form \(\frac{0}{0}\), we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] if the limit on the right exists. ### Step 3: Differentiate the numerator Using the Leibniz rule for differentiation under the integral sign, we differentiate the numerator: \[ \frac{d}{dx} \left( \int_0^{(x-1)^2} t \cos t \, dt \right) = (x-1)^2 \cos((x-1)^2) \cdot \frac{d}{dx}((x-1)^2) = (x-1)^2 \cos((x-1)^2) \cdot 2(x-1). \] Thus, the derivative of the numerator is: \[ 2(x-1)^3 \cos((x-1)^2). \] ### Step 4: Differentiate the denominator Now we differentiate the denominator: \[ \frac{d}{dx} \left( (x-1) \sin(x-1) \right) = \sin(x-1) + (x-1) \cos(x-1). \] ### Step 5: Rewrite the limit Now we can rewrite our limit using the derivatives: \[ \lim_{x \to 1} \frac{2(x-1)^3 \cos((x-1)^2)}{\sin(x-1) + (x-1) \cos(x-1)}. \] ### Step 6: Check the form again Substituting \(x = 1\) again gives: - The numerator becomes \(2(1-1)^3 \cos(0) = 0\). - The denominator becomes \(\sin(0) + (1-1) \cos(0) = 0 + 0 = 0\). We still have the form \(\frac{0}{0}\), so we apply L'Hôpital's Rule again. ### Step 7: Differentiate again Differentiate the numerator again: \[ \frac{d}{dx} \left( 2(x-1)^3 \cos((x-1)^2) \right) = 6(x-1)^2 \cos((x-1)^2) + 2(x-1)^3 \cdot (-\sin((x-1)^2)) \cdot 2(x-1). \] The denominator differentiates to: \[ \cos(x-1) + \cos(x-1) - (x-1) \sin(x-1) = 2\cos(x-1) - (x-1) \sin(x-1). \] ### Step 8: Evaluate the limit again Substituting \(x = 1\) again into the new limit gives: - The numerator becomes \(6(0)^2 \cos(0) + 2(0)^3 \cdot (-\sin(0)) \cdot 2(0) = 0\). - The denominator becomes \(2\cos(0) - (0)\sin(0) = 2\). Thus, we have: \[ \lim_{x \to 1} \frac{0}{2} = 0. \] ### Final Answer The limit is: \[ \boxed{0}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 1)""((int_0^((x-1)) t cos(t) dt)/((x-1) sin(x-1)))

lim_ (x rarr0) (int_ (0) ^ (x) cos tdt) / (x) =

lim_ (x rarr0) (int_ (0) ^ (x) sin ^ (2) t cos tdt) / (x ^ (3))

The value of lim_(x rarr0^(+))(int_(1)^(cos x)(cos^(-1)t)dt)/(2x-sin(2x)) is equal to

lim_(x rarr0)x sin((1)/(x^(2)))

lim_(x rarr0)(2int_(0)^(cos x)cos^(-1)tdt)/(2x-sin2x) is equal to (i) 0 (ii) (1)/(2)( iiii) -(1)/(2)( iv) (2)/(3)

lim_(x rarr0)x sin((1)/(x))

If lim_(x rarr0)int_(0)^(x)(t^(2)dt)/((x-sin x)sqrt(a+t))=1, then a is equal to

lim_ (x rarr0) (int_ (0) ^ (x) tdt) / (x tan (x + pi))

lim_(x rarr0+)((sin x)^((1)/(x))+(cos x)^(1/x)+(cosec x)^(x)) is equal to