Home
Class 12
MATHS
Let I1= int0^1 (1-x^50)^100 dx and I2= i...

Let `I_1= int_0^1 (1-x^50)^100 dx `and `I_2= int_0^1(1-x^50)^101 dx and` `I_1= lamda ``I_2`, then `lamda` is

A

`5051/5050`

B

`5050/5051`

C

`1`

D

`5049/5050`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\lambda\) such that \(I_1 = \lambda I_2\), where \[ I_1 = \int_0^1 (1 - x^{50})^{100} \, dx \] and \[ I_2 = \int_0^1 (1 - x^{50})^{101} \, dx. \] ### Step 1: Express \(I_2\) in terms of \(I_1\) We can rewrite \(I_2\) as follows: \[ I_2 = \int_0^1 (1 - x^{50})^{101} \, dx = \int_0^1 (1 - x^{50})^{100} (1 - x^{50}) \, dx. \] ### Step 2: Expand \(I_2\) Now we can expand \(I_2\): \[ I_2 = \int_0^1 (1 - x^{50})^{100} \, dx - \int_0^1 x^{50} (1 - x^{50})^{100} \, dx. \] ### Step 3: Identify \(I_1\) From the definition of \(I_1\), we have: \[ I_1 = \int_0^1 (1 - x^{50})^{100} \, dx. \] ### Step 4: Define the second integral Let us denote the second integral as \(I\): \[ I = \int_0^1 x^{50} (1 - x^{50})^{100} \, dx. \] ### Step 5: Relate \(I_1\) and \(I_2\) Now we can express \(I_2\) in terms of \(I_1\) and \(I\): \[ I_2 = I_1 - I. \] ### Step 6: Find \(I\) To find \(I\), we can use integration by parts. Let: - \(u = (1 - x^{50})^{100}\) and \(dv = x^{50} \, dx\). Then: - \(du = -50 x^{49} (1 - x^{50})^{99} \, dx\) and \(v = \frac{x^{51}}{51}\). Using integration by parts: \[ I = \left[ u v \right]_0^1 - \int_0^1 v \, du. \] Evaluating the boundary term: At \(x = 1\), \(u = 0\) and at \(x = 0\), \(u = 1\), so: \[ \left[ u v \right]_0^1 = 0 - 0 = 0. \] Now we need to evaluate the integral: \[ -\int_0^1 \frac{x^{51}}{51} \left(-50 x^{49} (1 - x^{50})^{99}\right) \, dx = \frac{50}{51} \int_0^1 x^{100} (1 - x^{50})^{99} \, dx. \] ### Step 7: Substitute back into \(I_2\) Now we can substitute \(I\) back into the equation for \(I_2\): \[ I_2 = I_1 - \frac{50}{51} I_2. \] ### Step 8: Solve for \(I_2\) Rearranging gives: \[ I_2 + \frac{50}{51} I_2 = I_1, \] which simplifies to: \[ \frac{101}{51} I_2 = I_1. \] ### Step 9: Find \(\lambda\) Thus, we find: \[ \lambda = \frac{I_1}{I_2} = \frac{101}{51}. \] ### Final Answer The value of \(\lambda\) is: \[ \lambda = \frac{101}{51}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(1)=int_(0)^(1)(1-x^(50))^(100)dx and I_(2)=int_(0)^(1)(1-x^(50))^(101)dx, If I_(2)=(alpha)/(beta)I_(1) ( alpha,beta are coprime) then beta-alpha

Let I_1=int_0^1 (dx)/(1+x^(1/3)) and I_2=int_0^1 (dx)/(1+x^(1/4)) then 4I_1+3I_2=

Let I_1=int_0^1e^(x^2)dx and I_2=int_0^(12)2^(x^2)e^(x^2)dx then the value of I_1 +I_2 is equal to

Evaluate: 5050(int_(0)^(1)(1-x^(50))^(100)dx)/(int_(0)^(1)(1-x^(50))^(101)dx)

(i) int_0^1 x sqrt(2-x) dx (ii) int_0^1 x^2(1-x)^n dx

I=int_(0)^(1)((1+x)/(2-x))dx

" If I=int_(0)^(1)(1-x^(4))^(7)dx and J=int_(0)^(1)(1-x^(4))^(6)dx then (I)/(J)