Home
Class 12
MATHS
If A=[[costheta,sintheta],[-sintheta,cos...

If `A=[[costheta,sintheta],[-sintheta,costheta]]` and `beta=A^4+A` then determinant of `beta=`

A

`2-2cos3theta`

B

`2+3cos2theta`

C

`3+cos2theta`

D

`2+2cos3theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant of the matrix \(\beta = A^4 + A\), where \(A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}\). ### Step 1: Calculate \(A^2\) First, we calculate \(A^2\): \[ A^2 = A \cdot A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \cdot \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \] Calculating the elements: - First row, first column: \(\cos^2 \theta + \sin^2 \theta = 1\) - First row, second column: \(\cos \theta \sin \theta + \sin \theta \cos \theta = 2 \cos \theta \sin \theta\) - Second row, first column: \(-\sin \theta \cos \theta + \cos \theta \sin \theta = 0\) - Second row, second column: \(-\sin^2 \theta + \cos^2 \theta = \cos 2\theta\) So, we have: \[ A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I \] ### Step 2: Calculate \(A^4\) Next, we calculate \(A^4\): \[ A^4 = (A^2)^2 = I^2 = I \] ### Step 3: Calculate \(\beta\) Now we can find \(\beta\): \[ \beta = A^4 + A = I + A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \] Calculating the elements: \[ \beta = \begin{bmatrix} 1 + \cos \theta & \sin \theta \\ -\sin \theta & 1 + \cos \theta \end{bmatrix} \] ### Step 4: Calculate the determinant of \(\beta\) Now we calculate the determinant of \(\beta\): \[ \text{det}(\beta) = (1 + \cos \theta)(1 + \cos \theta) - (-\sin \theta)(\sin \theta) \] Calculating this gives: \[ \text{det}(\beta) = (1 + \cos \theta)^2 + \sin^2 \theta \] Using the identity \(\sin^2 \theta + \cos^2 \theta = 1\): \[ \text{det}(\beta) = (1 + \cos \theta)^2 + (1 - \cos^2 \theta) = (1 + \cos \theta)^2 + 1 - \cos^2 \theta \] Expanding \((1 + \cos \theta)^2\): \[ = 1 + 2\cos \theta + \cos^2 \theta + 1 - \cos^2 \theta = 2 + 2\cos \theta \] Thus, the determinant of \(\beta\) is: \[ \text{det}(\beta) = 2(1 + \cos \theta) \] ### Final Answer The determinant of \(\beta\) is \(2(1 + \cos \theta)\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[costheta, sintheta], [-sintheta, costheta]] , then

If A = ((costheta,-sintheta),(sintheta,costheta)) then

If A=[[costheta, sintheta], [-sintheta, costheta]] , then |A^(-1)|=

Evaluate- |[costheta,sintheta],[sintheta,costheta]|

If A={:[(costheta,-sintheta),(-sintheta,costheta)]:}, and AB=BA=I" then "B=

If A=[(costheta,-sintheta),(sintheta,costheta)] " then " A^(-1) =?

if A= [{:(costheta,sintheta),(-sintheta,costheta):}], then A A^T =?

If {:A=[(costheta,-sintheta),(sintheta,costheta)]:},"then" A^T+A=I_2 , if

If sintheta+costheta=x then sintheta-costheta=?

Let A=[{:(costheta,sintheta),(-sintheta,costheta):}] , then |2A| is equal to