Home
Class 12
MATHS
Consider the following statements in res...

Consider the following statements in respect of the determinant `|[cos^2(alpha/2),sin^2(alpha/2)],[sin^2(beta/2),cos^2(beta/2)]|` where `alpha,beta` are complementary angles

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos(alpha+beta)=0 then sin^(2)alpha+sin^(2)beta

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

If cos^2alpha-sin^2alpha=tan^2beta ,show that cos^2beta-sin^2beta=tan^2alpha

Prove that: cos2 alpha cos2 beta+sin^(2)(alpha-beta)-sin^(2)(alpha+beta)=cos2(alpha+beta)

Prove that (cos alpha+cos beta)^(2)+(sin(alpha)+sin beta)^(2)=4cos^(2)((alpha-beta)/(2))

2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)=

Prove that (cos2 alpha-cos 2 beta)/(sin2 alpha+sin2 beta)=tan(beta-alpha)

The value of the determinant Delta = |(cos (alpha + beta),- sin (alpha + beta),cos 2 beta),(sin alpha,cos alpha,sin beta),(- cos alpha,sin alpha,- cos beta)| , is

The value of the determinant Delta = |(cos (alpha + beta),- sin (alpha + beta),cos 2 beta),(sin alpha,cos alpha,sin beta),(- cos alpha,sin alpha,- cos beta)| , is

Prove that , tan(alpha+beta)tan(alpha-beta)=(sin^2alpha-sin^2beta)/(cos^2alpha-sin^2beta)