Home
Class 12
MATHS
If two circles (x-1)^(2)+(y-3)^(2)=r^(2)...

If two circles `(x-1)^(2)+(y-3)^(2)=r^(2)` and `x^(2)+y^(2)-8x+2y+8=0` intersect in two distinct points , then

Promotional Banner

Similar Questions

Explore conceptually related problems

If the two circles (x-1)^(2)+(y-3)^(2)=r^(2) and x^(2)+y^(2)-8x+2y+8=0 intersect in two distinct points, then

If two circle (x-1)^(2)+(y-3)^(2)=r^(2) and x^(2)+y^(2)-8x+2y+8=0 intersect in two distinct points, then

If the circles (x-1)^(2)+(y-3)^(2)=4r^(2) and x^(2)+y^(2)-8x+2y+8=0 intersect in two distinct points, then show that 1ltrlt 4 .

If the two circles (x-2)^(2)+(y-3)^(2)=r^(2) and x^(2)+y^(2)-10x+2y+17=0 intersect in two distinct point then

If the two circles (x+1)^(2)+(y-3)=r^(2) and x^(2)+y^(2)-8x+2y+8=0 intersect in two distinct point,then (A)r>2(B)2

If the two circles (x-2)^(2)+(y+3)^(2) =lambda^(2) and x^(2)+y^(2) -4x +4y-1=0 intersect in two distinct points then :

If the two circles (x-2)^(2)+(y+3)^(2) =lambda^(2) and x^(2)+y^(2) -4x +4y-1=0 intersect in two distinct points then :

If the two circles (x - 1)^(2) + (y - 3)^(2) = r^(2) and x^(2) + y^(2) - 8x+ 2y + 8 = 0 intersect at two distinct points, then