Home
Class 12
MATHS
A function f is continuous for all x (an...

A function `f` is continuous for all `x` (and not everywhere zero) such that `f^2(x)=int_0^xf(t)(cost)/(2+sint)dtdot` Then `f(x)` is `1/2 1n((x+cosx)/2); x!=0` `1/2 1n(3/(x+cosx)); x!=0` `1/2 1n((2+sinx)/2); x!=npi,n in I` `(cosx+sinx)/(2+sinx); x!=npi+(3pi)/4,n in I`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(1-cosx)/(1-sinx)," then: "f'((pi)/(2)) is

0

Let F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt on [0,(pi)/(2)] , then

If f(x) = -4sinx+cosx for x =pi/2 is continuous then

f(x)= (1-sinx+cosx)/(1+sinx+cosx) discontinuous at x=pi . Find f(pi) so that f(x) is continuous x=pi

f(x) = (4x^3-3x^2)/6 -2Sinx +(2x-1)Cosx , then f(x) is

Evaluate : (i) int_(0)^(pi//2)(cosx)/((cos\ (x)/(2)+sin\ (x)/(2)))dx (ii) int_(0)^(pi//2)(cosx)/((1+cosx+sinx))dx

The function f(x)=(1-sinx+cosx)/(1+sinx+cosx) is not defined at x=pi . The value of f(pi) so that f(x) is continuous at x=pi is