Home
Class 12
MATHS
" Prove the following "cos[tan^(+){sin(c...

" Prove the following "cos[tan^(+){sin(cot^(+)x)}]=sqrt((1+x^(2))/(2+x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: cos{tan^(-1){sin(cot^(-1)x)}}=sqrt((1+x^(2))/(2+x^(2)))

Prove the following: "cos"{tan^(-1){sin(cot^(-1)x)}}= sqrt((1+x^2)/(2+x^2))

Prove the following: cos[tan^-1{sin(cot^-1x)}]=sqrt((1+x^2)/(2+x^2))

Directions (Q. Nos. 16-25) Prove the following "cos"["tan"^(-1){"sin"("cot"^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2)) .

Prove that cos[tan^(-1). {sin (cot^(-1)x)}]=sqrt((1+x^(2))/(2+x^(2))) .

Prove that : cos [ tan^(-1) { sin (cot^(-1) x)}]= sqrt((x^2 +1)/(x^2 +2))

Prove that cos[Tan^(-1){sin(Cot^(-1)x)}] = sqrt((x^(2)+1)/(x^(2)+2))

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((x^(2)+1)/(x^(2)+2))