Home
Class 12
MATHS
If I(n)=int(0)^(pi/2) sin^(x)x dx, then ...

If `I_(n)=int_(0)^(pi/2) sin^(x)x dx`, then show that `I_(n)=((n-1)n)I_(n-2)`.
Hence prove that
`I_(n)={(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(1/2)(pi)/2,"if",n"is even"),(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(2/3)1,"if",n"is odd"):}`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^( pi/4)tan^(n)xdx, prove that I_(n)+I_(n-2)=(1)/(n+1)

If I_(n)=int_(0)^(pi//4)tan^(n)x dx , where n ge 2 , then : I_(n-2)+I_(n)=

I_(n)=int_(0)^((pi)/(4))tan^(n)xdx, then the value of n(l_(n-1)+I_(n+1)) is

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

If I_(n)=int_(0)^(pi//4) tan^(n) x dx, lim_(n to oo) n(I_(n+1)+I_(n-1)) equals

IF I_n=int_0^(pi//4) tan^n x dx then what is I_n+I_(n+2) equal to

If u_(n)=int_(0)^((pi)/(2))theta sin^(n)theta d theta and n>=1, then prove that u_(n)=((n-1)/(n))u_(n-2)+(1)/(n^(2))

If I_(n)=int_(0)^(1)x^(n)(tan^(-1)x)dx, then prove that(n+1)I_(n)+(n-1)I_(n-2)=-(1)/(n)+(pi)/(2)