Home
Class 12
MATHS
Given that f satisfies |f(u)-f(v)|lt=|u...

Given that `f` satisfies `|f(u)-f(v)|lt=|u-v|` for u and v in `[a , b]dot` Then `|int_a^bf(x)dx-(b-a)f(a)|lt=` (a)`((b-a))/2` (b) `((b-a)^2)/2` (c)`(b-a)^2` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^(3) show that int_(a)^(b)f(x)dx=(b-a)/(6){f(a)+4f((a+b)/(2))+f(b)}

int_(a)^(b-a)f''(x+a)dx equals (a) f(b-a)-f(a) " " (b) f(b)-f(2a) (c) f'(b)-f'(2a) " " (d) f'(b-a)-f'(2a)

Prove that int_(a)^(b)(f(x))/(f(x)+f(a+b-x)) dx=(b-a)/(2) .

If f(x) is monotonic differentiable function on [a,b], then int_(a)^(b)f(x)dx+int_(f(a))^(f(b))f^(-1)(x)dx=(a)bf(a)-af(b)(b) bf (b)-af(a)(c)f(a)+f(b)(d) cannot be found

If f(a+b-x)=f(x), then prove that int_(a)^(b)xf(x)dx=(a+b)/(2)int_(a)^(b)f(x)dx