Home
Class 7
MATHS
a^m xx b^n=3087 then a+b=...

`a^m xx b^n=3087` then `a+b=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a = 2i + 3j - 5k, b = mi + nj + 12k and a xx b = 0 then (m, n) =

For any non-zero integers 'a' and 'b" and whole numbers m and n. - a^(m) xx a^(n) = a^(m+n) a^(m) =a^(n), a gt 0 rArr m=n a^(m) + a^(n)=a^(m-n) If (2/9)^(3) xx (2/9)^(6) =(2/9)^(2m-1) , then m equals

For any non-zero integers 'a' and 'b" and whole numbers m and n. a^(m) xx a^(n) = a^(m+n) a^(m) =a^(n), a gt 0 rArr m=n a^(m) ÷ a^(n)=a^(m-n) The value of (6^(12) xx 15^(16))/3^(11) is:

If n(A xx B)=6 and A={1,3} then n (B) is ........,

Simplify the following using the law a^m xx b^m = (ab)^m : a^8 xx b^8 .

Show that: ((a+1/b)^m xx\ (a-1/b)^n)/((b+1/a)^m\ xx\ (b-1/a)^n)=(a/b)^(m+n)

If A is any m xx n such that AB and BA are both defined show that B is an n xx m matrix.