Home
Class 12
MATHS
(d)/(dx)(x)=?...

(d)/(dx)(x)=?

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) and g(x) a re differentiate functions, then show that f(x)+-g(x) are also differentiable such that (d)/(dx){f(x)+-g(x)}=(d)/(dx){f(x)}+-(d)/(dx){g(x)}

If (d)/(dx)[f(x)]=(1)/(1+x^(2))," then: "(d)/(dx)[f(x^(3))]=

Using the first principle,prove that: (d)/(dx)(f(x)g(x))=f(x)(d)/(dx)(g(x))+g(x)(d)/(dx)(f(x))

(d)/(dx)|x|

(d)/(dx)(a^(x)+x^(a))=?

Let f(x) be a differentiable and let c a be a constant.Then cf(x) is also differentiable such that (d)/(dx){cf(x)}=c(d)/(dx)(f(x))

The differentiation of e^(x) with respect to x is e^(x). i.e.(d)/(dx)(e^(x))=e^(x)

(d)/(dx)(a^(x)),a>0=

(d)/(dx)sin(x^(x))