Home
Class 11
MATHS
If alpha+beta+gamma=2pi,\ then- a.tan...

If `alpha+beta+gamma=2pi,\ ` then- a.`tanalpha/2+(tan\ beta)/2+tangamma/2=tanalpha/2tanbeta/2tangamma/2` b. `tanalpha/2+tanbeta/2+tan"(beta/2)tangamma/2=tangamma/2tanalpha/2=1` c.`tanalpha/2+t a nbeta/2+tangamma/2=tanalpha/2tanbeta/2tangamma/2` d.`tan(alpha/2)tan(beta/2) +tan(gamma/2)tan(beta/2) +tan(gamma/2)tan(alpha/2) =0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha+beta+gamma=2pi, then (a) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (b) tan(alpha/2)tan(beta/2)+tan(beta/2)tan(gamma/2)+tan(gamma/2)tan(alpha/2)=1 (c) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=-tan(alpha/2)tan(beta/2)tan(gamma/2) (d)none of these

If alpha+beta+gamma=2pi, then (a) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (b) tan(alpha/2)tan(beta/2)+tan(beta/2)tan(gamma/2)+tan(gamma/2)tan(alpha/2)=1 (c) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=-tan(alpha/2)tan(beta/2)tan(gamma/2) (d)none of these

If alpha+beta+gamma=2pi, then (a) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (b)tan(alpha/2)tan(beta/2)+tan(beta/2)tan(gamma/2)+tan(gamma/2)tan(alpha/2)=1 (c)tan(alpha/2)+tan(beta/2)+tan(gamma/2)=-tan(alpha/2)tan(beta/2)tan(gamma/2) (d)none of these

If alpha+beta+gamma=2pi, then (a) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (b) tan(alpha/2)tan(beta/2)+tan(beta/2)tan(gamma/2)+tan(gamma/2)tan(alpha/2)=1 (c) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=-tan(alpha/2)tan(beta/2)tan(gamma/2) (d)none of these

If alpha+beta+gamma=2pi , then show that tan.alpha/2 + tan.beta/2 + tan.gamma/2 = tan.alpha/2 tan.beta/2 tan.gamma/2 .

If alpha+beta+gamma=2pi , then show that tan.alpha/2 + tan.beta/2 + tan.gamma/2 = tan.alpha/2 tan.beta/2 tan.gamma/2 .

If alpha+beta+gamma=2pi , then show that tan.alpha/2 + tan.beta/2 + tan.gamma/2 = tan.alpha/2 tan.beta/2 tan.gamma/2 .

If alpha+beta+gamma=2pi , then show that tan.alpha/2 + tan.beta/2 + tan.gamma/2 = tan.alpha/2 tan.beta/2 tan.gamma/2 .

If alpha+beta+gamma=2pi, then (A) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (B) tan(alpha/2)tan(beta/2)+tan(beta/2)tan(gamma/2)+tan(gamma/2)tan(alpha/2)=1 (C) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (D) none of these

If alpha+beta=pi/2a n dbeta+gamma=alpha, then tanalpha equals