Home
Class 12
MATHS
2 pi Gx=t^(2),y=t^(3),d^(2)y/dx^(2)=?...

2 pi Gx=t^(2),y=t^(3),d^(2)y/dx^(2)=?

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t^(2),y=t^(3), then (d^(2)y)/(dx^(2))=(a)(3)/(2)(b)(3)/((4t)) (c) (3)/(2(t)) (d) (3t)/(2)

If x = 2/t^(2), y = t^(3)-1, (d^(2)y)/(dx^(2) ) =

If x=t^(2),y=t^(3) what is (d^(2)y)/(dx^(2)) equal to ?

If x = t^(2), y = t^(3) then (d^(2)y)/(dx^(2)) is

If x=t^(2),quad y=t^(3), then (d^(2)y)/(dx^(2))=3/2(b)3/4t(c)3/2t(d)3t/2

If x=t^(2) and y=t^(3), find (d^(2)y)/(dx^(2))

If x=t^(2)andy=t^(3) , then (d^(2)y)/(dx^(2)) is equal to: a) (3)/(2) b) (3)/(2)t c) (3)/(2t) d) (3)/(4t)

If x=t^2, y = t^3, then (d^2y)/(dx^2) is

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to