Home
Class 12
MATHS
" (1) "A=[a(j,)](m times n)-m-q,{rArr m ...

" (1) "A=[a_(j,)]_(m times n)-m-q,{rArr m in D,i}

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[a_(ij)]_(mxxn) is a matrix of rank r then (A) rltmin{m,n} (B) rlemin{m,n} (C) r=min{m,n} (D) none of these

If A=[a_(ij)]_(mxxn) is a matrix of rank r then (A) rltmin{m,n} (B) rlemin{m,n} (C) r=min{m,n} (D) none of these

If A=[a_(ij)]_(mxxn) is a matrix of rank r then (A) r=min{m,n} (B) rlemin{m,n} (C) rltmin{m,n} (D) none of these

A =([a_(i j)])_(mxxn) is a square matrix, if (a) m n (c) m =n (d) None of these

A=[a_(ij)]_(m xx n) is a square matrix,if (a)m

m_(1),m_(2),m_(3) are the slope of normals (m_(1) < m_(2) < m_(3)) drawn through the point (9,-6) to the parabola y^(2)=4x and A= [a_(ij)] is square matrix of order 3 such that a_(ij) = {:{(1, if i!=j),(m_(i), if i=j) :} quad Then |A|=......

Let A=[a_(ij)]_(m×n) is defined by a_(ij)=i+j . Then the sum of all the elements of the matrix is

Construct a 3×4m a t r i c A=[a_(i j)] whose elements are given by a_(i j)=i+j (ii) a_(i j)=i-j

For any non-zero integers 'a' and 'b" and whole numbers m and n. - a^(m) xx a^(n) = a^(m+n) a^(m) =a^(n), a gt 0 rArr m=n a^(m) + a^(n)=a^(m-n) If (2/9)^(3) xx (2/9)^(6) =(2/9)^(2m-1) , then m equals

For any non-zero integers 'a' and 'b" and whole numbers m and n. a^(m) xx a^(n) = a^(m+n) a^(m) =a^(n), a gt 0 rArr m=n a^(m) ÷ a^(n)=a^(m-n) The value of (6^(12) xx 15^(16))/3^(11) is: