Home
Class 12
MATHS
If a^(x)=b, b^(y)=c,c^(z)=a, prove that ...

If `a^(x)=b, b^(y)=c,c^(z)=a,` prove that xyz = 1 where a,b,c are distinct numbers

Text Solution

Verified by Experts

We have, `a^(xyz)=(a^(x))^(yz)`
`rArr a^(xyz)=(b)^(yz)[ :' a^(x)=b]`
`rArr a^(xyz)=(b^(y))^(z)`
`rArr a^(xyz)=c^(z) [ :'b^(y)=c]`
`rArr a^(xyz)=a[ :' c^(z)=a]`
`:. A^(xyz)=a^(1)`
`rArr xyz=1`
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a^(x)=b,b^(y)=c and c^(z)=a, prove that xyz=1

If a^x=b,b^y=c,c^z=a then the value of xyz is:

If a^(x)=b,b^(y)=c,c^(z)=a, then find the value of xyz.

FInd x when det[[x+a,a^(2),a^(3)x+b,b^(2),b^(3)x+c,c^(2),c^(3)]]=0 where a,b,c are distinct numbers and a!=b!=c

If a^(x)=b,b^(y)=c and c^(z)=a then find the value of xyz

If a + x = b + y = c + z + 1 , where a, b,c,x,y,z are non polar distinct real numbers , then |(x, a+y,x + a),(y , b+y , y + b),(z,c+y, z+c)| is equal to :

Given the system of equation a(x+y+z)=x, b(x+y+z)=y, c(x+y+z)= z where a,b,c are non-zero real numbers.If the real numbers are such that xyz!=0 ,then (a+b+c) is equal to