Home
Class 12
MATHS
Find the value of 6(sin^6theta+cos^6th...

Find the value of `6(sin^6theta+cos^6theta)-9(sin^4theta+cos^4theta)+4`

A

0

B

1

C

`-2`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`4[(sin^(2)theta+cos^(2)theta)^(3)-3sin^(2)thetacos^(2)theta(sin^(2)theta+cos^(2)theta)]-6[(sin^(2)theta+cos^(2)theta)^(2)-2sin^(2)thetacos^(2)theta)]`
`=4[1-3sin^(2)thetacos^(2)theta]-[1-2sin^(2)thetacos^(2)theta]`
`=4-12sin^(2)thetacos^(2)theta-6+12sin^(2)thetacos ^(2)theta=-2`
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find the value of 6(sin^(6)theta+cos^(6)theta)-9(sin^(4)theta+cos^(4)theta)+4

Find the value of 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)-(sin^(2)theta+cos^(2)theta)^(2)

The value of 2(sin^6 theta+ cos^6 theta )-3 (sin^4 theta + cos^4 theta) is ……..

Find the value of 2(sintheta^(6)+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)

The value of 8(sin^(6)theta+cos^(6)theta)-12(sin^(4)theta+cos^(4)theta) is equal to

What is the value of sin^6theta+cos^6theta+3sin^2thetacos^2theta-1 ?

The value for 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1 is

The value of (2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta))/(cos^(4)theta-sin^(4)theta-2cos^(2)theta) is :

What is the value of sin^6 theta + cos^6 theta + 3sin^2 theta cos^2 theta ?