Home
Class 12
MATHS
Prove that tan 70^(@)=cot70^(@)++2cot40^...

Prove that `tan 70^(@)=cot70^(@)++2cot40^(@)`

Text Solution

Verified by Experts

LHS `=tan 70^(@)=tan(20^(@)+50^(@))=(tan20^(@)+tan 50^(@))/(1-tan20^(@)tan.50^(@))`
or `tan70^(@)-tan20^(@)tan50^(@)tan70^(@)=tan20^(@)+tan50^(@)`
or `tan70^(@)= tan70^(@)tan50^(@)tan20^(@)+tan20^(@)+tan50^(@)=2tan 50^(@)+tan20^(@)`
`=cot70^(@)+2cot40^(@)=RHS`.
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Prove that: tan70^(@)=tan20^(@)+2tan50^(@)

cot70^(@)+4cos70^(@)

Prove that tan70^(@)=2tan50^(@)+tan20^(@)

Prove that tan 70^(@) = "tan " 20^(@) + 2"tan " 50^(@)

tan 70^(@) - tan 20^(@) -2 tan 40^(@)=

Without using trigonometric tables , prove that : (i) tan20^(@)tan40^(@) tan45^(@)tan50^(@)tan70^(@)=1 (ii) tan1^(@) tan2^(@)tan60^(@)tan88^(@)tan89^(@)=sqrt(3) (iii) cot5^(@)cot10^(@)cot30^(@)cot80^(@)cot85^(@)=sqrt(3) (iv) 4sin10^(@)sin20^(@)sin30^(@)sec70^(@)sec80^(@)=2

Prove that: tan10^(@) tan20^(@)tan70^(@)tan80^(@)=1

Prove that tan70=2tan50+tan20

(cot50^(@))/(tan40^(@))

Prove that: (i) tan 50^(@)="tan"40^(@)+2 tan 10^(@) (ii) 2 tan 70^(@)="tan"80^(@)-"tan"10^(@)