Home
Class 12
MATHS
sin 67(1)/(2)^(@)+cos67(1)/(2)^(@) is eq...

`sin 67(1)/(2)^(@)+cos67(1)/(2)^(@)` is equal to

A

`(1)/(2)sqrt(4+2sqrt(2))`

B

`(1)/(2)sqrt(4-2sqrt(2))`

C

`(1)/(4)(sqrt(4+2sqrt(2)))`

D

`(1)/(4)(sqrt(4-2sqrt(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin 67.5^\circ + \cos 67.5^\circ \), we can use the following steps: ### Step 1: Recognize the Expression We start with the expression: \[ y = \sin 67.5^\circ + \cos 67.5^\circ \] ### Step 2: Square the Expression Next, we square both sides: \[ y^2 = (\sin 67.5^\circ + \cos 67.5^\circ)^2 \] ### Step 3: Expand the Square Using the identity \( (a + b)^2 = a^2 + b^2 + 2ab \), we expand: \[ y^2 = \sin^2 67.5^\circ + \cos^2 67.5^\circ + 2 \sin 67.5^\circ \cos 67.5^\circ \] ### Step 4: Apply the Pythagorean Identity Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ y^2 = 1 + 2 \sin 67.5^\circ \cos 67.5^\circ \] ### Step 5: Use the Double Angle Identity Recall that \( 2 \sin A \cos A = \sin(2A) \). Here, \( A = 67.5^\circ \): \[ y^2 = 1 + \sin(135^\circ) \] ### Step 6: Evaluate \( \sin(135^\circ) \) Since \( \sin(135^\circ) = \sin(180^\circ - 45^\circ) = \sin(45^\circ) = \frac{\sqrt{2}}{2} \): \[ y^2 = 1 + \frac{\sqrt{2}}{2} \] ### Step 7: Simplify the Expression Now, we can write: \[ y^2 = \frac{2}{2} + \frac{\sqrt{2}}{2} = \frac{2 + \sqrt{2}}{2} \] ### Step 8: Take the Square Root Taking the square root of both sides gives: \[ y = \sqrt{\frac{2 + \sqrt{2}}{2}} = \frac{\sqrt{2 + \sqrt{2}}}{\sqrt{2}} \] ### Step 9: Final Result Thus, the final result for \( \sin 67.5^\circ + \cos 67.5^\circ \) is: \[ \sin 67.5^\circ + \cos 67.5^\circ = \frac{\sqrt{2 + \sqrt{2}}}{\sqrt{2}} \]

To solve the expression \( \sin 67.5^\circ + \cos 67.5^\circ \), we can use the following steps: ### Step 1: Recognize the Expression We start with the expression: \[ y = \sin 67.5^\circ + \cos 67.5^\circ \] ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

sin(67 1/2)^(@) + cos( 67 1/2)^(@) is equal to A) 1/2sqrt(4+2sqrt(2)) , B) 1/2sqrt(4-2sqrt(2)) , C) 1/4(sqrt(4+2sqrt(2))) , D) 1/4(sqrt(4-2sqrt(2)))

sin((1)/(2)cos^(-1).(4)/(5)) is equal to

tan 67 (1^(@))/(2) + cot 67 (1^(@))/(2) equals

" (2) "sin^(-1)x+sin^(-1)(1/x)+cos^(-1)x+cos^(-1)(1/x)" is equal to "

If sin A=a cos B and cos A=b sin B then (a^(2)-1)tan^(2)A+(1-b^(2))tan^(2)B is equal to

If sin^(-1)x+sin^(-1)y=(pi)/(2), "then" cos^(-1)x+cos^(-1)y is equal to

The sum of cot^(-1)((7)/(4))+cot^(-1)((19)/(4))+cot^(-1)((39)/(4))+cot^(-1)((67)/(4))..... oo is equal to :