Home
Class 12
MATHS
In a triangle ABC, sin A- cos B = Cos C...

In a triangle `ABC, sin A- cos B = Cos C`, then angle `B` is

A

`pi//2`

B

`pi//3`

C

`pi//4`

D

`pi//6`

Text Solution

Verified by Experts

The correct Answer is:
A

We have, `sin A-cosB=cosC`
`sinA=cosB+cosC`
`rArr 2 sin(A)/(2)cos(A)/(2)=2cos((B+C)/(2))cos((B-C)/(2))`
`rArr 2sin(A)/(2)cos(A)/(2)=2cos((pi-A)/(2))cos((B-C)/(2))because A+B+C=pi`
`rArr2sin(A)/(2)cos(A)/(2)=2sin(A)/(2)cos((B-C)/(2))`
`rArrcos(A)/(2)=cos(B-C)/(2)` or `A=B-C: "but" A+B+C=pi`
therefore `2B=pirArrB=pi//2`
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

In any triangle ABC,sin A-cos B=cos C, the angle B is a.(pi)/(2) b.(pi)/(3) c.(pi)/(4) d.(pi)/(6)

In a triangle ABC, cos A+cos B+cos C=

In a triangle ABC, a cos A+b cos B+ c cos C=

In a triangle ABC,cos A+cos B+cos C

If in a triangle ABC , sin A =cos B , then the value of cos C is

In a Delta ABC, if sin A-cos B=cos C, then the measure of /_B is

In a triangle ABC, if cos A cos B+sin A sin B sin C=1, then a:b:c is equal to