Home
Class 12
MATHS
The maximum value of 1+sin(pi/4+theta)+2...

The maximum value of `1+sin(pi/4+theta)+2cos(pi/4-theta)` for real values of `theta` is

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
D

we have `1+((pi)/(4)+theta)+2cos ((pi)/(4)-theta)`
`=1+(1)/sqrt(2)(cos theta+sin theta)+sqrt(2)(cos theta+sin theta)=1+((1)/sqrt(2)+sqrt(2))(cos theta+sin theta)`
`=1+((1)/sqrt(2)+sqrt(2)).sqrt(2)cos(theta-(pi)/(4))`
`therefore` maximum value `1+((1)/sqrt(2)+sqrt(2)).sqrt(2)=4`.
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

The maximum value of 1+sin((pi)/(6)+theta)+2cos((pi)/(3)-theta) for real values of theta is

The maximum value of 1+sin((pi)/(4) +theta) +2cos((pi)/(4) - theta) for all real values of theta is :

The maximum values of 3 costheta+5sin(theta-(pi)/(6)) for any real value of theta is:

If A=sin^(2)theta+cos^(4)theta, then for all real values of theta

If sin(pi cos theta)=cos(pi sin theta), then of the value cos(theta+-(pi)/(4)) is

The maximum value of sin(theta+(pi)/(6))+cos(theta+(pi)/(6)) is attained at theta in(0,(pi)/(2))