Home
Class 12
MATHS
Prove that tan alpha+2 tan 2 alpha+2^(...

Prove that
`tan alpha+2 tan 2 alpha+2^(2)tan^(2)alpha+..............+2^(n-1)tan2^(n-1)alpha+2^(@)cot2^(@)alpha=cotalpha`

Text Solution

Verified by Experts

We know `tan theta=cot theta-2 cot 2 theta`.
Putting `theta=alpha,2alpha,2^(2)alpha,....................` in (i), we get
`tan alpha=(cot alpha-2 cot 2alpha)`
`2(tan2alpha)=2(cot 2 alpha-2 cot 2 ^(2)alpha)`
`2^(2)(tan2^(2)alpha)=2^(2)(cot2^(2)alpha-2cot2^(3)alpha)`
`2^(n-1)(tan2^(n-1)alpha)=2^(n-1)(cot2^(n-1)alpha-2cos2^(n)alpha)`
Adding,
`tan alpha+2tan 2alpha+2^(2)tan^(2)alpha+..........+2^(n-1)tan2^(n-1)alpha=cotalpha-2^(n)cot2^(n)alpha`
`therefore tan alpha+2 tan 2 alpha+2^(2)tan^(2)alpha+..........+2^( n-1)alpha+2^(n)cot2^(n)alpha=cotalpha`.
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Prove that: tan alpha +2tan 2alpha+ 2^(2)tan 2^(2)alpha +..... + 2^(n-1) tan 2^(n-1)alpha + 2^n cot 2^n alpha=cotalpha .

To find sum of tangents of a series of angles,the angles being in Arithmetical Progression To prove: Explian f his tan alpha+2tan2 alpha+2^(2)tan(2^(2)alpha)+2^(3)tan(2^(3)alpha)+......*2^(n-1)tan(2^(n-1)alpha)+2^(n)cot(2^(n)alpha)=cot alpha given all the functions are defined.

The value of tan alpha+2tan(2 alpha)+4tan(4 alpha)+...+2^(n-1)tan(2^(n-1)alpha)+2^(n)cot(2^(n)alpha) is

1+tan alpha*tan((alpha)/(2))

If tan alpha+cot alpha=2 then

If n=(pi)/(4 alpha), then tan alpha tan2 alpha tan3 alpha.......tan(2n-1)alpha is equal to

Prove that: tan alpha+2tan2 alpha+4tan4 alpha+8cot8 alpha=cot alpha

Given that cot theta-tan theta=2cot2 theta , cot theta+tan theta=2cosec2 theta and cot theta-cot2 theta=cosec2 theta, Tan alpha + 2Tan2 alpha+4Tan4 alpha+.....2^(n)Tan2^(n)alpha=cot alpha-1024cot1024 alpha Then n= a) 10 b) 9 c) 11 d) 8