Home
Class 12
MATHS
If A,B,C and D are angles of quadrilater...

If A,B,C and D are angles of quadrilateral and `sin(A)/(2)sin(B)/(2)sin(C)/(2)sin(D)/(2)=(1)/(4)`, prove that A=B=C=D=`pi//2`

Text Solution

Verified by Experts

`(2sin(A)/(2)sin(B)/(2))(sin(C)/(2)sin(D)/(2))=1`
`rArr{cos((A-B)/(2))-cos((A+B)/(2))}{cos((C-D)/(2))-cos((C+D)/(2))}=1`
Since `A +B=2pi-(C+D)`, the above equation becomes.
`rArr{cos((A-B)/(2))-cos((A+B)/(2))}{cos((C-D)/(2))+cos((A+B)/(2))}=1`
`rArr((A+B)/(2))-cos((A+B)/(2)){cos((A-B)/(2))-cos((C-D)/(2))}+1-cos((A-B)/(2))cos((C-D)/(2))=0`
This is a quadratic equation is `cos((A+B)/(2))` which has real roots.
`rArr{cos((A-B)/(2))-cos((C-D)/(2))}^(2)-4{1-cos((A-B)/(2))cos((C-D)/(2))}ge0`
`(cos(A-B)/(2)+cos(C-D)/(2))^(2)ge4`
`rArrcos(A-B)/(2)+cos(C-D)/(2)ge2`, now both `cos(A-B)/(2)` and `cos(C-D)/(2)le1` ltbr. `rArrcos(A-B)/(2)=1 &cos(C-D)/(2)=1`
`rArr(A-B)/(2)=0=(C-D)/(2)`
`rArrA=B,C=D`.
Similarly `A=C,B=DrArrA=B=C=D=pi//2`
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

is A+B+C=pi, prove that sin((A)/(2))sin((B)/(2))sin((C)/(2))>=-1

If A,B,C,D be the angles of a quadrilateral , what is the value of (sin(A+B))/(sin (C+D)) +(cos(C+D))/(cos (A+B))

If A+B+C=pi then prove that cos A+cos B+cos C=1+4sin((A)/(2))*sin((B)/(2))*sin((C)/(2))

If A+B+C=pi, then prove that sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin((B-C)/(2))sin((C-A)/(2))sin((A-B)/(2))

If A+B+C=pi then prove that sin((A)/(2))+sin((B)/(2))+sin((C)/(2))-1=4sin((pi-A)/(4))sin((pi-B)/(4))sin((pi-C)/(4))

sin A + sin B-sin C = 4sin ((A) / (2)) sin ((B) / (2)) cos ((C) / (2))

If A+B+C=pi, prove that sin((A)/(2))+sin((B)/(2))+sin((C)/(2))=1+4sin((pi-B)/(4))sin((pi-B)/(4))*sin((pi-C)/(4))

In quadrilateral ABCD, if sin((A+B)/(2))cos((A-B)/(2))+sin((C+D)/(2))cos((C-D)/(2))=2 then find the value of sin(A)/(2)sin(B)/(2)sin(C)/(2)sin(D)/(2)

If any quadrilateral ABCD,prove that sin(A+B)+sin(C+D)=0cos(A+B)=cos(C+D)