Home
Class 12
MATHS
If cot theta=(4)/(3), then find the val...

If ` cot theta=(4)/(3)`, then find the value of `sin theta,cos theta` and `cos ectheta` in first quadrant.
If `sin theta+cos ec theta=2` then find the value of `sin^(8 )theta+cos ec^(8)theta`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will break it down into two parts as outlined in the question. ### Part 1: Finding `sin(theta)`, `cos(theta)`, and `cos(ectheta)` 1. **Given Information**: We know that \( \cot \theta = \frac{4}{3} \). - Since \( \cot \theta = \frac{\cos \theta}{\sin \theta} \), we can express this as: \[ \frac{\cos \theta}{\sin \theta} = \frac{4}{3} \] 2. **Assigning Values**: Let \( \cos \theta = 4k \) and \( \sin \theta = 3k \) for some scalar \( k \). 3. **Finding the Hypotenuse**: Using the Pythagorean theorem: \[ h^2 = (\sin \theta)^2 + (\cos \theta)^2 \] Substituting the values we have: \[ h^2 = (3k)^2 + (4k)^2 = 9k^2 + 16k^2 = 25k^2 \] Therefore, the hypotenuse \( h \) is: \[ h = 5k \] 4. **Calculating `sin(theta)`**: \[ \sin \theta = \frac{\text{perpendicular}}{\text{hypotenuse}} = \frac{3k}{5k} = \frac{3}{5} \] 5. **Calculating `cos(theta)`**: \[ \cos \theta = \frac{\text{base}}{\text{hypotenuse}} = \frac{4k}{5k} = \frac{4}{5} \] 6. **Calculating `cos(ectheta)`**: \[ \cos(ectheta) = \frac{1}{\sin \theta} = \frac{1}{\frac{3}{5}} = \frac{5}{3} \] ### Summary of Part 1: - \( \sin \theta = \frac{3}{5} \) - \( \cos \theta = \frac{4}{5} \) - \( \cos(ectheta) = \frac{5}{3} \) ### Part 2: Finding `sin^8(theta) + cos^8(theta)` 1. **Given Information**: We have \( \sin \theta + \cos(ectheta) = 2 \). - Substituting the values we found: \[ \frac{3}{5} + \frac{5}{3} = 2 \] 2. **Simplifying the Equation**: To find \( \sin^8 \theta + \cos^8 \theta \), we can use the identity: \[ a^8 + b^8 = (a^4 + b^4)(a^4 - b^4) \] where \( a = \sin \theta \) and \( b = \cos \theta \). 3. **Finding \( \sin^4 \theta \) and \( \cos^4 \theta \)**: \[ \sin^2 \theta + \cos^2 \theta = 1 \quad \text{(Pythagorean identity)} \] \[ \sin^4 \theta + \cos^4 \theta = (\sin^2 \theta + \cos^2 \theta)^2 - 2\sin^2 \theta \cos^2 \theta = 1 - 2\left(\frac{3}{5} \cdot \frac{4}{5}\right) = 1 - 2 \cdot \frac{12}{25} = 1 - \frac{24}{25} = \frac{1}{25} \] 4. **Finding \( \sin^8 \theta + \cos^8 \theta \)**: \[ \sin^8 \theta + \cos^8 \theta = (\sin^4 \theta + \cos^4 \theta)^2 - 2(\sin^4 \theta \cos^4 \theta) \] We already found \( \sin^4 \theta + \cos^4 \theta = \frac{1}{25} \). Now we need \( \sin^4 \theta \cos^4 \theta = \left(\frac{3}{5} \cdot \frac{4}{5}\right)^4 = \left(\frac{12}{25}\right)^2 = \frac{144}{625} \). 5. **Final Calculation**: \[ \sin^8 \theta + \cos^8 \theta = \left(\frac{1}{25}\right)^2 - 2\left(\frac{144}{625}\right) = \frac{1}{625} - \frac{288}{625} = -\frac{287}{625} \] ### Summary of Part 2: - \( \sin^8 \theta + \cos^8 \theta = -\frac{287}{625} \) ### Final Answers: - \( \sin \theta = \frac{3}{5} \) - \( \cos \theta = \frac{4}{5} \) - \( \cos(ectheta) = \frac{5}{3} \) - \( \sin^8 \theta + \cos^8 \theta = -\frac{287}{625} \)
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If sin theta+cos ec theta=2, then the value of sin^(8)theta+cos ec^(8)theta is

If sin theta+cos ec theta=2, then the value of sin^(8)theta+cos ec^(8)theta is equal to

If sin theta+cos ec theta=2 then the value of sin^(10)theta+cos ec^(10)theta is

If cos ec theta-cot theta=3 then find the value of sin theta

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

If cos theta=(3)/(5), find the value of cot theta+cos ec theta

sin theta+cos theta=sqrt(3)cos theta then find the value of cos theta-sin theta is

If 5 tan theta =4 then find the value of (5 sin theta - cos theta)/(sin theta + 3 cos theta)

If sin theta=(4)/(5), what is the value of cot theta+cos ec theta?

If tan theta=-(3)/(4) and (pi)/(2)