Home
Class 12
MATHS
The maximum values of 3 costheta+5sin(th...

The maximum values of `3 costheta+5sin(theta-(pi)/(6))` for any real value of `theta` is:

A

`sqrt(1 9)`

B

`sqrt(79)/(2)`

C

`sqrt(31)`

D

`sqrt(34)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \(3 \cos \theta + 5 \sin \left( \theta - \frac{\pi}{6} \right)\), we can follow these steps: ### Step 1: Rewrite the expression using the sine subtraction formula We know that: \[ \sin(a - b) = \sin a \cos b - \cos a \sin b \] Using this, we can rewrite \(5 \sin \left( \theta - \frac{\pi}{6} \right)\) as: \[ 5 \left( \sin \theta \cos \frac{\pi}{6} - \cos \theta \sin \frac{\pi}{6} \right) \] Substituting the values of \(\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}\) and \(\sin \frac{\pi}{6} = \frac{1}{2}\), we get: \[ 5 \sin \left( \theta - \frac{\pi}{6} \right) = 5 \left( \sin \theta \cdot \frac{\sqrt{3}}{2} - \cos \theta \cdot \frac{1}{2} \right) \] This simplifies to: \[ \frac{5\sqrt{3}}{2} \sin \theta - \frac{5}{2} \cos \theta \] ### Step 2: Substitute back into the original expression Now substituting this back into the original expression, we have: \[ 3 \cos \theta + \frac{5\sqrt{3}}{2} \sin \theta - \frac{5}{2} \cos \theta \] Combining the terms involving \(\cos \theta\): \[ \left(3 - \frac{5}{2}\right) \cos \theta + \frac{5\sqrt{3}}{2} \sin \theta = \frac{1}{2} \cos \theta + \frac{5\sqrt{3}}{2} \sin \theta \] ### Step 3: Find the maximum value of the combined expression The expression can be written as: \[ \frac{1}{2} \cos \theta + \frac{5\sqrt{3}}{2} \sin \theta \] The maximum value of \(a \cos \theta + b \sin \theta\) is given by \(\sqrt{a^2 + b^2}\). Here, \(a = \frac{1}{2}\) and \(b = \frac{5\sqrt{3}}{2}\). Calculating \(a^2 + b^2\): \[ \left(\frac{1}{2}\right)^2 + \left(\frac{5\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{25 \cdot 3}{4} = \frac{1}{4} + \frac{75}{4} = \frac{76}{4} = 19 \] ### Step 4: Calculate the maximum value Thus, the maximum value is: \[ \sqrt{19} \] ### Conclusion The maximum value of \(3 \cos \theta + 5 \sin \left( \theta - \frac{\pi}{6} \right)\) for any real value of \(\theta\) is: \[ \sqrt{19} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find the maximum and minimum value of 5cos theta+3sin(theta+(pi)/(6)) for all real values of theta . Find the minimum value of costheta+cos2theta for all real values of theta . Find the maximum and minimum value of cos^(2)theta-6sin thetacos theta+3sin^(2)theta+2 .

The maximum value of 5sin theta+3sin(theta+(pi)/(3))+3 is

Find maximum and minium value of 5costheta+3sintheta(theta+pi/6) for all real values of theta .

The maximum value of 5costheta+3cos(theta+pi/3)+3 is:

The Maximum value of cos^(6)theta+sin^(6)theta is :

can6sin^(2)theta-7sin theta+2=0 for any real value of theta?

The maximum value of 1+sin((pi)/(6)+theta)+2cos((pi)/(3)-theta) for real values of theta is

The maximum value of 1+sin((pi)/(4)+theta)+2cos((pi)/(4)-theta) for real values of theta is