Home
Class 12
MATHS
Sum up to 16 terms of the series (1^(3))...

Sum up to 16 terms of the series `(1^(3))/(1) + (1^(3) + 2^(3))/(1 + 3) + (1^(3) + 2^(3) + 3^(3))/(1 + 3 + 5) + ..` is

A

450

B

456

C

446

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the first 16 terms of the series \[ \frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 3} + \frac{1^3 + 2^3 + 3^3}{1 + 3 + 5} + \ldots \] we will denote the \( n \)-th term of the series as \( T_n \). ### Step 1: Identify the \( n \)-th term \( T_n \) The numerator of \( T_n \) is the sum of cubes from 1 to \( n \): \[ T_n = \frac{1^3 + 2^3 + 3^3 + \ldots + n^3}{1 + 3 + 5 + \ldots + (2n - 1)} \] The denominator is the sum of the first \( n \) odd numbers, which can be expressed as: \[ 1 + 3 + 5 + \ldots + (2n - 1) = n^2 \] Thus, we can write: \[ T_n = \frac{\sum_{k=1}^{n} k^3}{n^2} \] ### Step 2: Use the formula for the sum of cubes The formula for the sum of the first \( n \) cubes is: \[ \sum_{k=1}^{n} k^3 = \left(\frac{n(n + 1)}{2}\right)^2 \] So we can substitute this into our expression for \( T_n \): \[ T_n = \frac{\left(\frac{n(n + 1)}{2}\right)^2}{n^2} \] ### Step 3: Simplify \( T_n \) Now we simplify \( T_n \): \[ T_n = \frac{n^2(n + 1)^2}{4n^2} = \frac{(n + 1)^2}{4} \] ### Step 4: Find the sum of the first 16 terms Now we need to find the sum of the first 16 terms, denoted as \( S_{16} \): \[ S_{16} = T_1 + T_2 + T_3 + \ldots + T_{16} \] Substituting our expression for \( T_n \): \[ S_{16} = \sum_{n=1}^{16} T_n = \sum_{n=1}^{16} \frac{(n + 1)^2}{4} \] This can be factored out: \[ S_{16} = \frac{1}{4} \sum_{n=1}^{16} (n + 1)^2 \] ### Step 5: Calculate \( \sum_{n=1}^{16} (n + 1)^2 \) We can rewrite \( (n + 1)^2 \) as \( n^2 + 2n + 1 \): \[ \sum_{n=1}^{16} (n + 1)^2 = \sum_{n=1}^{16} (n^2 + 2n + 1) = \sum_{n=1}^{16} n^2 + 2\sum_{n=1}^{16} n + \sum_{n=1}^{16} 1 \] Using the formulas: - \( \sum_{n=1}^{k} n^2 = \frac{k(k + 1)(2k + 1)}{6} \) - \( \sum_{n=1}^{k} n = \frac{k(k + 1)}{2} \) For \( k = 16 \): \[ \sum_{n=1}^{16} n^2 = \frac{16 \cdot 17 \cdot 33}{6} = 1496 \] \[ \sum_{n=1}^{16} n = \frac{16 \cdot 17}{2} = 136 \] \[ \sum_{n=1}^{16} 1 = 16 \] Putting it all together: \[ \sum_{n=1}^{16} (n + 1)^2 = 1496 + 2 \cdot 136 + 16 = 1496 + 272 + 16 = 1784 \] ### Step 6: Calculate \( S_{16} \) Now substituting back: \[ S_{16} = \frac{1}{4} \cdot 1784 = 446 \] ### Final Answer Thus, the sum of the first 16 terms of the series is: \[ \boxed{446} \]

To find the sum of the first 16 terms of the series \[ \frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 3} + \frac{1^3 + 2^3 + 3^3}{1 + 3 + 5} + \ldots \] we will denote the \( n \)-th term of the series as \( T_n \). ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Do yourself|3 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Do yourself 2|2 Videos
  • RACE

    ALLEN|Exercise Race 21|10 Videos
  • TEST PAPER

    ALLEN|Exercise CHEMISTRY SECTION-II|8 Videos

Similar Questions

Explore conceptually related problems

Sum to n terms of the series 1^(3) - (1.5)^(3) +2^(3)-(2.5)^(3) +…. is

The sum of the first 9 terms of the series (1^(3))/(1)+(1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+3+5)...... is :

The n^(th) term of the series (1^(3))/(1)+(1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+3+5)+... will be

The sum of first 9 terms of the series (1^(3))/(1)+(1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+3+5)+"........" is

The sum of first 9terms of the series (1^(3))/(1)+(1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+2+3)+.... is (1)71(2)96 (3) 142(4)192

Find the sum of the series (1)/(1)+(1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+3+5)+... up to n terms.

FIn dthe sum of this series (1^(3))/(1)+(1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+3+5)+...+ till 10^(th) term ^(*)

The sum of the series 1^(3) + 2 ^(3) + 3^(3) + ...+15^(3) is