Home
Class 11
MATHS
[" 18.If "A,B" and "C" be three angles a...

[" 18.If "A,B" and "C" be three angles are in A.P.Prove that "],[qquad cot B=(sin A-sin C)/(cos C-cos A)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If the angles A,B,C are in A.P., prove that cot B=("sin" A-"sin" C)/(cos C-cos A)

If three angles A,B, and C are in A.P.prove that: cot B=(s in A-s in C)/(cos C-cos A)

If three angles A, B, and C are in A.P. prove that: cot B=(sin A-sin C)/(cos C-cos A)

If the angles A, B, C are in A.P., prove that cot B = (sin A-sin C)/(cos C-cosA) .

If A,B,C are in A.P then (sin A-sin C)/(cos C-cos A)=

If A, B, C are angles of a triangle , prove that cos 2A+cos 2B -cos 2C=1-4 sin A sin B cos C

If A,B,C are in A.P., then correct relation is cot A=(sin B+sin C)/(cos C+sin B)

Prove that ( b- a cos C) sin A = a cos A sin C

In a triangleABC, " prove that "(sin B)/(sin C)=(c-a cos B)/(b-a cos C)

Prove that a cos A+b cos B+c cos C=4R sin A sin B sin C