Home
Class 11
MATHS
[" If "f(x)=sin^(2)x" and the composite ...

[" If "f(x)=sin^(2)x" and the composite functions "],[g{f(x)}=|sin x|" ,then the function "g(x)=]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sin^2x and the composite function g(f(x))=|sinx| , then g(x) is equal to sqrt(x-1) (b) sqrt(x) (c) sqrt(x+1) (d) -sqrt(x)

If f(x)=sin^2x and the composite function g(f(x))=|sinx| , then g(x) is equal to (a) sqrt(x-1) (b) sqrt(x) (c) sqrt(x+1) (d) -sqrt(x)

If f(x)=sin^(-l)x and g(x)=sqrt(x), the domain of composite function fog(x) is

f(x)=sin sin sin x is a function

IF f(x) = sqrt(x) and the composite function f(g(x))= sqrt(4x^2-5) , which of the following could be g(x) ?

If y = f(u) is a differentiable functions of u and u = g(x) is a differentiable functions of x such that the composite functions y = f[g(x) ] is a differentiable functions of x then (dy)/(dx) = (dy)/(du) . (du)/(dx) Hence find (dy)/(dx) if y = sin ^(2)x

If f(x)=sin^(2)x and g(x)={x} are two real valued function then

If g(x) is the inverse function and f'(x) = sin x then prove that g'(x) = cosec [g(x)]

If g is the inverse function of f and f'(x) = sin x then g'(x) =

If f(x)= sin^(2)x and g(f(x))=|sin x|, then g(x)=