Home
Class 12
MATHS
" If "x=3cos t-cos^(3)t;y=3sin t-sin^(3)...

" If "x=3cos t-cos^(3)t;y=3sin t-sin^(3)t" then "(dy)/(dx)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=3cost-2cos^(3)t,y=3sint-2sin^(3)t then find dy/dx .

"If "x=3cost-2cos^(3)t,y=3sint-2sin^(3)t," show that"(dy)/(dx)=cott.

If x=a cos^(3)t,y=b sin^(3)t then (dy)/(dx)=

If x=a cos^(3)ty=a sin^(3)t then (dy)/(dx)=

If x =3 cos t-2cos ^(3) t,y =3 sin t- 2 sin ^(3) t,then (dy)/(dx) =

If x = 3 cos t - 2 cos^3 t,y = 3 sin t- 2 sin^3 t, then dy/dx is

If x= 2 cos^(4) (t+3) ,y=3sin ^(4) (t+3) ,then (dy)/(dx)=

Show that the equation of normal at any point ton the curve x=3cos t-cos^(3)t and y=3sin t-sin^(3)t is 4(y cos^(3)t-x sin^(3)t)=3sin4t