Home
Class 12
MATHS
STATEMENT 1 : On the interval [(5pi)/4,(...

STATEMENT 1 : On the interval `[(5pi)/4,(4pi)/3]dot` the least value of the function `f(x)=int_((5x)/4)^x(3sint+4cost)dti s0` STATEMENT 2 : If `f(x)` is a decreasing function on the interval `[a , b],` then the least value of `f(x)` is `f(b)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

The least value of the function f(x) = 4 + 4x + (16)/(x) is :

Let f(x) be a differentiable function in the interval (0,2) then the value of int_(0)^(2)f(x) is

Let f(x) be a differentiable function in the interval (0, 2) then the value of int_(0)^(2)f(x)dx

The least value of the function phi(x)=int_((7pi)/6)^(x)(4sint+3cost)dt on the interval [(7pi)/6,(4pi)/3] is

The least value of the function phi(x)=int_(5pi//4)^(x) (3sin t+4 cos t)dt on the integral [5pi//4,4pi//3] , is

The least value of the function f(x) = 2 cos x + x in the closed interval [0,pi/2] is

The least value of the function F(x) = int_(x)^(2) log_(1//3) t dt, x in [1//10,4] is at x=

f(x)=cos2x, interval [-(pi)/(4),(pi)/(4)]

The function f(x)= cos ((pi)/(x)) is decreasing in the interval