Home
Class 12
MATHS
Evaluate: int0^(10pi)[tan^(-1)x]dx ,w h ...

Evaluate: `int_0^(10pi)[tan^(-1)x]dx ,w h e r e[x]` represents greatest integer function.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_(-100)^(100)[tan^(-1)x]dx ,w h e r e[x] represents greatest integer function.

The integral I=int_(0)^(100pi)[tan^(-1)x]dx (where, [.] represents the greatest integer function) has the vlaue K(pi)+ tan(p) then value of K + p is equal to

Evaluate: int_(0)^(oo)[2e^(-x)]dx, where [x] represents greatest integer function.

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

The value of int_(0)^(100)[tan^(-1)x]dx is,(where [^(*)] denotes greatest integer function)

Evaluate: int_(0)^(100)x-[x]dx where [.] represents the greatest integer function).

Evaluate: int_(0)^((5 pi)/(12))[tan x]dx, where [.] denotes the greatest integer function.

The value of int_(pi)^(2 pi)[2sin x]dx where [.] represents the greatest integer function is

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to