Home
Class 9
MATHS
" (b) Prove that: "(a+b)^(-1)(a^(-1)+b^(...

" (b) Prove that: "(a+b)^(-1)(a^(-1)+b^(-1))=(1)/(ab)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: :(a^(-1)+b^(-1))^(-1)=(ab)/(a+b)

Prove that: (a^(-1)+b^(-1))^(-1)=(a b)/(a+b)

Prove that: (a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^2)/(b^2-a^2)

Prove that :(a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^(2))/(b^(2)-a^(2))

Prove that : (a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^2)/(b^2-a^2)

Prove that: a^(-1)/(a^-1 +b^-1)+a^-1/(a^-1-b^-1)=(2b^2)/(b^2-a^2)

Prove that: (a+b+c)/(a^(-1)\ b^(-1)+b^(-1)\ c^(-1)+c^(-1)a^(-1))=a b c

Prove that, tan^(-1)a+tan^(-1)b+tan^(-1)((1-a-b-ab)/(1+a+b-ab))=(pi)/(4) .

Prove that : tan^(-1) a - tan^(-1) b = cos ^(-1) [(1+ab)/(sqrt((1+a^(2))(1+b^(2))))]

Prove that : tan^(-1) a - tan^(-1) b = cos ^(-1) [(1+ab)/(sqrt((1+a^(2))(1+b^(2))))]