Home
Class 11
MATHS
" 9) "y=sqrt(x)^(sqrt(x))sqrt(x)^(cdots+...

" 9) "y=sqrt(x)^(sqrt(x))sqrt(x)^(cdots+oo)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(sqrt(x))^sqrt(x)^sqrt(x)^(dot)^(((oo))),s howt h a t(dy)/(dx)=(y^2)/(x(2-ylogx)

y=sqrt(x)^(sqrt(x)^(sqrt(x)....oo)

If y=(sqrt(x))^((sqrt(x))^((sqrt(x))^(...oo) , show that, x (dy)/(dx)=(y^(2))/(2-y log x).

If y=(sqrt(x))^((sqrt(x))^((sqrt(x))^(...oo) , show that, x (dy)/(dx)=(y^(2))/(2-y log x).

If (sqrt(x))^((sqrt(x))^((sqrt(x))^(...oo))) and x(dy)/(dx) =(f(y))/( 2-y log x) , then the value of f(y) is -

The value of x+sqrt(x^(2)+sqrt(x^(4)+sqrt(x^(8)+sqrt(x^(16)+cdots))))

If y=(sqrt(x))^(sqrt(x)^(sqrt(x))...oo), show that (dy)/(dx)=(y^(2))/(x(2-y log x))

IF y=sqrt(x sqrt((x^(2))(sqrt(x^(3)))))dots...oo then ((dy)/(dx))atx=2 equals

If y=sqrt(x+sqrt(x+sqrt(x+\ dotto\ oo))) , prove that (dy)/(dx)=1/(2\ y-1)