Home
Class 9
MATHS
" (iv) "(3a-7b-c)^(2)...

" (iv) "(3a-7b-c)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Expand each of the following , using suitable identities. (3a-7b-c)^(2)

Expand each of the following using suitable identities : (3a-7b-c)^(2)

Expand the following using suitable Identities : (3a-7b-c)^2 .

Let in a triangle ABC sides opposite to vertices A B&C be a b&c then there exists a triangle satisfying (1) tan A+tan B+tan C=0 (2) (sin A)/(2)=(sin B)/(3)=(sin C)/(7) (3) (a+b)^(2)=c^(2)+ab (4) Not possible

Let in a triangle ABC sides opposite to vertices A B&C be a, b, & c then there exists a triangle satisfying (A) tan A+tan B+tan C=0 (B) (sin A)/(2)=(sin B)/(3)=(sin C)/(7) (C) (a+b)^(2)=c^(2)+ab (D) Not possible

In a triangle ABC,a=4,b=3,/_A=60^(@) then c is root of the equation c^(2)-3c-7=0 (b) c^(2)+3c+7=0(c)c^(2)-3c+7=0(d)c^(2)+3c-7=0

Add the algebraic expressions: (3)/(2)a-(5)/(4)b+(2)/(5)c,(2)/(3)a-(7)/(2)b+(7)/(2)c,(5)/(3)a+(5)/(3)a+(5)/(2)b-(5)/(4)c

The rationalising factor of root(7)(a^(4)b^(3)c^(5)) is (a) root(7)(a^(3)b^(4)c^(2)) (b) root(7)(a^(3)b^(4)c^(2)) (c) root(7)(a^(2)b^(3)c^(3)) (d) root(7)(a^(2)b^(4)c^(3))

If a,b and c are non-coplanar vectors, prove that 3a-7b-4c, 3a-2b+c and a+b+2c are coplanar.