Home
Class 12
MATHS
Consider I1=int0^(pi/4)e^x^2dx ,I2=int0^...

Consider `I_1=int_0^(pi/4)e^x^2dx ,I_2=int_0^(pi/4)e^x dx ,I_3=int_0^(pi/4)e^x^2cosxdx ,I_4=int_0^(pi/4)e^x^2sinxdxdot` STATEMENT 1 : `I_2> I_1> I_3> I_4` STATEMENT 2 : For `x in (0,1),x > x^2a n dsinx >cosxdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).sin x dx , then :

(i) int_0^(pi/2) sin^2 x dx (ii) int_0^(pi//2) cos^2 x dx

I=int_(0)^(1)e^(x^(2)-x)dx then

If I_(1)=int_(0)^(pi//2)"x.sin x dx" and I_(2)=int_(0)^(pi//2)"x.cos x dx" , then

(i) int_0^(pi//4) tan x dx (ii) int_(pi//4)^(pi//2) cot x dx

I_(1)=int_(0)^((pi)/2)In (sinx)dx, I_(2)=int_(-pi//4)^(pi//4)In(sinx+cosx)dx . Then

(i) int_0^(pi//4) sec x dx (ii) int_(pi//6)^(pi//4) cosec x dx

If I = int_(0)^(pi//4) sin^(2) x" "dx and J = int_(0)^(pi//4)cos^(2)x" " dx. then