Home
Class 10
MATHS
" (xi) "2^(log(3)5)+3^(log(5)7)-5^(log(3...

" (xi) "2^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

Promotional Banner

Similar Questions

Explore conceptually related problems

7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

Calculate 7^(log g_(3)5) + 3 ^(log_(5)7 ) - 5 ^(log_(3)7) - 7 ^(log_(5)3)

The simplified value of the expression : 2^(log_(3)5)*2^(log_(3)5^(2)) - 5^(log_(3)2)*25^((log_(3)2)) is

log_(3)(5+8log_(49)(5+4log_(49)7))

x=log_(5)3+log_(7)5+log_(9)7

Find the value of (log_(3)4)(log_(4)5)(log_(5)6)(log_(6)7)(log_(7)8)(log_(8)9)

The value of (log_(3) 5 xx log_(25) 27 xx log_(49) 7)/(log_(81)3) is