Home
Class 12
MATHS
The value of int0^(2pi)[2sinx]dx ,w h e ...

The value of `int_0^(2pi)[2sinx]dx ,w h e r e[dot]` represents the greatest integral function, is (a)`(-5pi)/3` (b) `-pi` (c)`(5pi)/3` (d) `-2pi`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2 pi)[2sin x]dx, where [.] represents the greatest integral functions,is

The value of int_(pi)^(2 pi)[2sin x]dx where [.] represents the greatest integer function is

The value of int_(pi)^(2 pi)[2cos x]dx where [.] represents the greatest integer function is -

The value of int_(pi)^(2pi)[2sinx]dx is equal to (where [.] represents the greatest integer function)

Evaluate -int_(3pi//2)^(pi//2)[2sinx]dx , when [.] denotes the greatest integer function.

The value of int_(e)^(pi^(2))[log_(pi)x]d(log_(e)x) (where [.] denotes greatest integer function) is

int_(pi)^(2pi)|sinx|dx=?