Home
Class 12
MATHS
f(x)=int1^x(tan^(-1)(t))/t dt , x in R^...

`f(x)=int_1^x(tan^(-1)(t))/t dt , x in R^+,` then find the value of `f(e^2)-f(1/(e^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let F(x)= F(x)=int_0^xtf(t)dt] and F(x^2)=x^4+x^5 then find the value of sum_(r=1)^12f(r^2)

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to :

f(x)=int_1^x lnt/(1+t) dt , f(e)+f(1/e)=

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then the value of (23)/(2)f(0) is equal to

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is