Home
Class 12
MATHS
Let f be a positive function. Let I1=in...

Let `f` be a positive function. Let `I_1=int_(1-k)^k xf([x(1-x)])dx ,` `I_2=int_(1-k)^kf[x(1-x)]dx,` where `2k-1> 0`. Then `(I_1)/(I_2)` is 2 (b) `k` (c) `1/2` (d) 1

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a positive function.If I_(1)=int_(1-k)^(k)xf[x(1-x)]dx and I_(2)=int_(1-k)^(k)f[x(1-x)]backslash dx, where 2k-1>0. Then (I_(1))/(I_(2)) is

If I_(1)=int_(1-x)^(k) x sin{x(1-x)}dx and I_(2)=int_(1-x)^(k) sin{x(1-x)}dx , then

Let f be a function defined by f(x)=4^x/(4^x+2) I_1=int_(f(1-a))^(f(a)) xf{x(1-x)}dx and I_2=int_(f(1-a))^(f(a)) f{x(1-x)}dx where 2a-1gt0 then I_1:I_2 is (A) 2 (B) k (C) 1/2 (D) 1

Let I_(1)=int_(1)^(2)(1)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

If I_(1)=int_(a)^(1-a)x.e^(x(1-x))dx and I_(2)=int_(a)^(1-a)e^(x(1-x))dx , then I_(1):I_(2) =

For x in R and a continuous function f, let I_1=int_(s in^2t)^(1+cos^2t)xf{x(2-x)}dxa n dI_2=int_(sin^2t)^(1+cos^2)xf{x(2-x)}dxdotT h e n(I_1)/(I_2) is -1 (b) 1 (c) 2 (d) 3

If f(x)=e^x/(1+e^x), I_1=int_(f(-a))^(f(a)) xg(x(1-x))dx and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx , then I_2/I_1 = (A) -1 (B) -3 (C) 2 (D) 1

Let I_(1)=int_(0)^(1)(5^(x))/(x+1)dx and I_(2)=int_(0)^(1)(x^(2))/(5^(x^(3))(2-x^(3)))dx then (I_(1))/(I_(2))=