Home
Class 12
MATHS
2^(sinx)+2^(cosx) >= K, then K=...

`2^(sinx)+2^(cosx) >= K,` then `K=`

Promotional Banner

Similar Questions

Explore conceptually related problems

2^(Sinx)+2^(Cosx) ge k then k=

int_(pi//6)^(pi//3)(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx))dx=(k)/(4) , then the value of k equals

If y=(2+sinx)/(1+2sinx)," and "(1+2sinx)^(2)y_(1)=kcosx," then "k=

If int(sinx+3cosx)/(sinx+cosx)dx=(kx)/(2)+ln(sinx+cosx) , then k is_________.

If int(sinx+3cosx)/(sinx+cosx)dx=(kx)/(2)+ln(sinx+cosx) , then k is_________.

"If " int(5tanx)/(tanx-2)dx=x+a " In"(sinx-2cosx)+k " then " a=

If the integral int(5tanx)/(tanx-2)dx=x+aInabs(sinx-2cosx)+k , then a is equal to

"If " int(5tanx)/(tanx-2)dx=x+a " In"(sinx-2cosx)+k " then " a=

"If " int(5tanx)/(tanx-2)dx=x+a " In"(sinx-2cosx)+k " then " a=

"If " int(5tanx)/(tanx-2)dx=x+a " In"(sinx-2cosx)+k " then " a=