Home
Class 12
MATHS
If g(x)=int0^xcos^4tdt , then g(x+pi) ...

If `g(x)=int_0^xcos^4tdt ,` then `g(x+pi)` equals (a)`g(x)+g(pi)` (b) `g(x)-g(pi)` (c)`g(x)g(pi)` (d) `(g(x))/(g(pi))`

A

`g(x) +g (pi)`

B

`g(x)-g (pi)`

C

`g(x)g(pi)`

D

`(g(x))/(g(pi))`

Text Solution

AI Generated Solution

To solve the problem, we need to find \( g(x + \pi) \) where \( g(x) = \int_0^x \cos^4 t \, dt \). ### Step-by-Step Solution: 1. **Write the expression for \( g(x + \pi) \)**: \[ g(x + \pi) = \int_0^{x + \pi} \cos^4 t \, dt \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x)=int_(0)^(x)cos^(4)t dt, then g(x+pi) equals

If g(x)=int_(0)^(x)cos^(4) dt , then g(x+pi) equals

If g(x)=int_(0)^(x)cos^(4) t dt , then (x+pi) equals

If g(x) = int_(0)^(x) cos dt , then g(x+pi) equals

Ifg(x)= int_(0)^(x) cos ^(4)t dt, "then " g (x+pi) equals

If g(x)=int_0^x cos4t\ dt ,\ t h e n\ g(x+pi) equals a. g(x)-g(pi) b. \ g(x)dotg(pi) c. (g(x))/(g(pi)) d. g(x)+g(pi)

If g(x)=int_(0)^(x)cos^(4)t dt , then prove that g(x+pi)=g(x)+g(pi) .

If g(x)=int0xx^(x)log_(e)(ex)dx , then g'(pi) equals