Home
Class 12
MATHS
Let f be a one-to-one continuous functio...

Let `f` be a one-to-one continuous function such that `f(2)=3a n df(5)=7.G i v e nint_2^5f(x)dx=17 ,` then find the value of `int_3^7f^(-1)(x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a one to one continuous function such that f(2)=3 and f(5)=6 . Given int_(2)^(5)f(x)dx=17 , then find the value of int_(3)^(7)f^(-1)(x)dx .

Let f(x)=e^(x)+2x+1 then find the value of int_(2)^(e+3)f^(-1)(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AA x in R. If int_(0)^(1)f(x)dx=1 then find the value of int_(1)^(2)f(x)dx

Let f:R to R be continuous function such that f(x)=f(2x) for all x in R . If f(t)=3, then the value of int_(-1)^(1) f(f(x))dx , is

Evaluate: int_(-1)^(4)f(x)dx=4 and int_(2)^(4)(3-f(x))dx=7 then find the value of int_(2)^(-1)f(x)dx

f(0)=1 , f(2)=e^2 , f'(x)=f'(2-x) , then find the value of int_0^(2)f(x)dx

Let f be a strictly increasing and continuous function in [1,5] such that f(1)=0,f(5)=10 If int_(1)^(5)f(x)dx=7, then int_(0)^(10)f^(-1)(x)dx equals:

If f(0)=1,f(2)=3,f'(2)=5, then find the value of int_(0)^(1)xf''(2x)dx