Home
Class 8
MATHS
0+cot0=p," prove that "cos theta=((p^(2)...

0+cot0=p," prove that "cos theta=((p^(2)-1))/((p^(2)+1))

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos ec theta+cot theta=p, then prove that cos theta=(p^(2)-1)/(p^(2)+1)

If cosec theta+cottheta=p ,then prove that: cos theta=(p^(2)-1)/(p^(2)+1)

If sec theta+tan theta=p, prove that sin theta=(p^(2)-1)/(p^(2)+1)

If cosectheta + cottheta=p , then prove that the cos theta=(p^2-1)/(p^2+1)

If cosectheta + cottheta=p , then prove that the cos theta=(p^2-1)/(p^2+1)

If cosec theta + cot theta = p prove that cos theta = p2-1 / p2 + 1

If sec theta + tan theta = p , prove that (i) sec theta =(1)/(2)(p+(1)/(p)) " (ii) "tan theta =(1)/(2)(p-(1)/(p)) " (iii) " sin theta =(p^(2)-1)/(p^(2)+1).

If sin theta+tan theta=P then prove that (p^(2)-1)/(p^(2)+1)=sin theta

If p^(2) = a^(2) cos^(2) theta + b^(2) sin^(2)theta , prove that p + (d^(2p)/(d theta^(2))) =(a^(2)b^(2))/p^(3)

Which of the following is possible? sin theta=(5)/(3) (b) tan theta=1002cos theta=(1+p^(2))/(1-p^(2)),(p!=+-1)(d)sec theta=(1)/(2)