Home
Class 12
MATHS
" ii) "x=(2at^(2))/(1+t),y=(3at)/(1+t)...

" ii) "x=(2at^(2))/(1+t),y=(3at)/(1+t)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (d^(2)y)/(dx^(2)) in the following x=(2at^(2))/(1+t),y=(3at)/(1+t)

Find the equation of tangent and normal to the curve x=(2at^(2))/((1+t^(2))),y=(2at^(3))/((1+t^(2))) at the point for which t=(1)/(2).

Find (dy)/(dx) if x=(3at)/(1+t^3), y=(3at^2)/(1+t^3) at t=1/2

Find the derivatives of the following : x=(1-t^(2))/(1+t^(2)), y=(2t)/(1+t^(2))

If x=(3at)/(1+t^2),y=(3at^2)/(1+t^2) then (dy)/(dx) =

x=(1-t^(2))/(1+t^(2)), y=(2t)/(1+t^(2)) " then " (dy)/(dx) is

The locus of the point x=(t^(2)-1)/(t^(2)+1),y=(2t)/(t^(2)+1)

If x=a((1+t^2)/(1-t^2)),y=(2t)/(1-t^2) find dy/dx at t=1/sqrt3 .

Find (dy)/(dx) if x=(3a t)/(1+t^3) ; y=(3a t^2)/(1+t^3)