Home
Class 12
MATHS
The integral int(-1/2)^(1/2) ([x]+1n((1+...

The integral `int_(-1/2)^(1/2)` `([x]+1n((1+x)/(1-x)))dx` is equal to (where [.] represents the greatest integer function) `-1/2` (b) 0 (c) 1 (c) `21n(1/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The tangent int_(-1/2)^(1/2)([x]+ln((1+x)/(1-x)))\ dx equals, where [\ ] denotes greatest integer function a. -1/2 b. \ 0 c. \ 1 d. 2ln\ (1/2)

The value of int_(-1)^(1)[|x|](1)/(1+e^(-(1)/(x)))dx where [.] denotes the greatest integer function is

int_(-1)^1[2x-3]dx= ( where [.] is greatest integer function)

lim_(xto1) [cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the greatest integer function) is equal to

int_(0)^(1)x^((m-1))(1-x)^((n-1))dx is equal to where m,n in N

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

the integral int_(0)^((1)/(2))(ln(1+2x))/(1+4x^(2))dx equals

Evaluate: int_(0)^(2)[x^(2)-x+1]dx, where [.] denotos the greatest integer function.

The value of int_(-2)^(1)[x[1+cos((pi x)/(2))]+1]dx where [.] denotes the greatest integer function,is 1 (b) 1/2 (c) 2 (d) none of these