Home
Class 12
MATHS
Discuss the differentiability of: f(x)={...

Discuss the differentiability of: `f(x)={[x(e^x-1)/(e^x+1),x!=0],[0,x=0]:}` at x=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Discuss the differentiability of f(x)={x e-(1/(|x|)+1/x),x!=0x ,x=0a tx=0

Discuss the differentiability of f(x)={x e-(1/(|x|)+1/x),x!=0x ,x=0a tx=0

Discuss the differentiability of f(x)= {( x sin(ln x^2),x!=0),( 0,x=0):} at x=0

Discuss the differentiability of f(x)= {( x sin(ln x^2),x!=0),( 0,x=0):} at x=0

Discuss the differentiability of f(x)= {( x sin(ln x^2),x!=0),( 0,x=0):} at x=0

Discuss the differentiability of f(x)=|(log)_(e)x|f or x>0

Discuss the differentiability of f(x)={xsin(1nx^2),x!=0 0,x=0a tx=0

Examine continuity and differentiability f(x)={[(1-e^(-x))/x,x!=0],[1,x=0]:} at x=0.

Discuss the differentiability of f(x)={(x-e)2^(-2((1)/(e-x)))),x!= eat x=e and 0,x=e

Discuss the differentiability of f(x)={x^2sin(1/x),\ \ \ \ x!=0 ; 0 if x=0 at x=0