Home
Class 12
MATHS
[" 5.If "y=a^(a^(a^(a)-b^(-1)))" prove t...

[" 5.If "y=a^(a^(a^(a)-b^(-1)))" prove that : "],[(dy)/(dx)=(y^(2)log x)/(x[1-y(log x)(log y)])]

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=a^(x^(x^(2)*oo)), prove that (dy)/(dx)=(y^(2)log y)/(x(1-y log x*log y))

If y=a^(x^(a^(x^(…oo)))) , show that, (dy)/(dx)=(y^(2)logy)/(x(1-y log x log y)) .

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If x^(y).y^(x)=1, prove that (dy)/(dx)=-(y(y+x log y))/(x(y log x+x))

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

x^(y)=e^(x-y) so,prove that (dy)/(dx)=(log x)/((1+log x)^(2))

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If x^(y)=y^(x) , prove that (dy)/(dx)=((y)/(x)-log y)/((x)/(y)-log x)